
On the Equivalen
e of Two Systems of AÆneRe
urren
e EquationsDenis Barthou1, Paul Feautrier2, and Xavier Redon31 Universit�e de Versailles Saint-Quentin, Laboratoire PRiSM,F-78035 Versailles, Fran
e,Denis.Barthou�prism.uvsq.fr,2 INRIA, F-78153 Le Chesnay, Fran
e,Paul.Feautrier�inria.fr,3 Universit�e de Lille I, �E
ole Polyte
h. Univ. de Lille & Laboratoire LIFL,F-59655 Villeneuve d'As
q, Fran
e,Xavier.Redon�eudil.fr,Abstra
t. This paper deals with the problem of de
iding whether twoSystems of AÆne Re
urren
e Equations are equivalent or not. A solu-tion to this problem would be a step toward algorithm re
ognition, animportant tool in program analysis, optimization and parallelization. We�rst prove that in the general 
ase, the problem is unde
idable. We thenshow that there nevertheless exists a semi-de
ision pro
edure, in whi
hthe key ingredient is the 
omputation of transitive 
losures of aÆne rela-tions. This is a non-e�e
tive pro
ess whi
h has been extensively studied.Many partial solutions are known. We then report on a pilot implemen-tation of the algorithm, des
ribe its limitations, and point to unsolvedproblems.1 Introdu
tion1.1 MotivationAlgorithm re
ognition is an old problem in 
omputer s
ien
e. Basi
ally, onewould like to submit a pie
e of 
ode to an analyzer, and get answers like \Lines 10to 23 are an implementation of Gaussian elimination". Su
h a fa
ility would en-able many important te
hniques: program 
omprehension and reverse engineer-ing, program veri�
ation, program optimization and parallelization, hardware-software 
odesign among others.Simple 
ases of algorithm re
ognition have already been solved, mostly usingpattern mat
hing as the basi
 te
hnique. An example is redu
tion re
ognition,whi
h is in
luded in many parallelizing 
ompilers. A redu
tion is the appli
ationof an asso
iative 
ommutative operator to a data set. See [9℄ and its referen
es.This approa
h has been re
ently extended to more 
ompli
ated patterns byseveral resear
hers (see the re
ent book by Metzger [8℄ and its referen
es).In this paper, we wish to explore another approa
h. We are given a library ofalgorithms. Let us try to devise a method for testing whether a part of the sour
e



program is equivalent to one of the algorithms in the library. The stumbling blo
kis that in the general 
ase, the equivalen
e of two programs is unde
idable. Ouraim is therefore to �nd sub-
ases for whi
h the equivalen
e problem is solvable,and to insure that these 
ases 
over as mu
h ground as possible.The �rst step is to normalize the given program as mu
h as possible. One
andidate for su
h a normalization is 
onversion to a System of AÆne Re
urren
eEquations (SARE)[3℄. It has been shown that stati
 
ontrol programs [4℄ 
an beautomati
ally 
onverted to SAREs. The next step is to design an equivalen
etest for SAREs. This is the main theme of this paper.1.2 Equivalen
e of two SAREsSuppose we are given two SAREs with their input and output variables. Supposefurthermore that we are given a bije
tion between the input variables of the twoSAREs, and also a bije
tion between the output variables. In what follows, two
orresponding input or output variables are usually denoted by the same letter,one of them being a

ented.The two SAREs are equivalent with respe
t to a pair of output variables, i�the outputs evaluate to the same values provided that the input variables areequal. In order to avoid diÆ
ulties with non-terminating 
omputations, we willassume that both SAREs have a s
hedule.The equivalen
e of two SAREs depends 
learly on the domain of values usedin the 
omputation. In this preliminary work, we will suppose that values belongto the Herbrand universe (or the initial algebra) of the operators o

urring in the
omputation. The Herbrand universe is 
hara
terized by the following property:!(t1; : : : ; tn) = !0(t01; : : : ; t0n0), ! = !0; n = n0 and ti = t0i; i = 1 : : : n: (1)where ! and !0 are operators and t1; : : : ; tn, t01; : : : ; t0n0 are arbitrary terms. Thegeneral 
ase is left for future work.It 
an be proved that, even in the Herbrand universe, the equivalen
e of twoSAREs is unde
idable. The proof is rather te
hni
al and 
an be found in [1℄.In Se
t. 2 we de�ne and prove a semi-de
ision pro
edure whi
h may prove ordisprove the equivalen
e of two SAREs, or fails. In Se
t. 3 we report on a pilotimplementation of the semi-de
ision pro
edure. We then 
on
lude and dis
ussfuture work.2 A Semi-de
ision Pro
edureFrom the above result, we know that any algorithm for testing the equivalen
eof two SAREs is bound to be in
omplete. It may give a positive or negativeanswer, or fail without rea
hing a de
ision. Su
h a pro
edure may neverthelessbe useful, provided the third 
ase does not o

ur too often. We are now going todesign su
h a semi-de
ision pro
edure. To ea
h pair of SAREs we will asso
iatea memory state automaton (MSA) [2℄ in su
h a way that the equivalen
e of ourSAREs 
an be expressed as problems of rea
hability in the 
orresponding MSA.Let us 
onsider the two parametri
 SAREs (with parameter n):



O[i℄ = 1; i = 0;= f(I[i℄); 1 � i � n; (2) O0[i0℄ = 1; i0 = 0;= f(X0[i0; n℄); 1 � i0 � n;X0[i0; j0℄ = I0[i0℄; 0 � i0 � n; j0 = 0;= X0[i0; j0 � 1℄; 0 � i0 � n; 1 � j0 � n: (3)The reader familiar with systoli
 array design may have re
ognized a mu
h sim-pli�ed version of a transformation known as pipelining or uniformization, whoseaim is to simplify the inter
onne
tion pattern of the array.The equivalen
e MSA is represented by the following drawing. Basi
ally, MSAare �nite state automata, where ea
h state is augmented by an index ve
tor. Ea
hedge is labelled by a �ring relation, whi
h must be satis�ed by the index ve
torfor the edge to be traversed.x0O[i℄=O0[i0℄ x4f(I[i℄)=f(X0[i0; n℄) x5I[i℄=X0[i0; n℄ x6I[i℄=X0[i0; j0℄x11=1 x21=f(X0[i0; n℄) x3f(I[i℄)=1 x8I(i)=X0[i0; j0 � 1℄ x7I[i℄=I0[i0℄R0 R1 R2R3 R4 R5 R6R7R8
The automaton is 
onstru
ted on demand from the initial state O[i℄ = O0[i0℄,expressing the fa
t that the two SAREs have the same output. Other states areequations between subexpressions of the left and right SARE. The transitionsare built a

ording to the following rules: If the lhs of a state is X [u(ix)℄, it 
anbe repla
ed in its su

essors by X [iy℄, provided the �ring relation in
ludes thepredi
ate iy = u(ix) (R8). If the lhs is X [ix℄ where X is de�ned by n 
lausesX [i℄ = !k(: : : Y [uY (i)℄ : : :); i 2 Dk then it 
an be repla
ed in its n su

essorsby !k(: : : Y [uY (iy)℄ : : :) provided the �ring relation in
ludes fix 2 Dk; iy = ixg(R0; : : : ; R3 and R6; R7). There are similar rules for the rhs. Note that equationsof the su

essor states are obtained by simultaneous appli
ation of rules forlhs and rhs. Moreover, the su

essors of a state with equation !(:::) = !(:::)are states with equations between the parameters of the fun
tion !. The �ringrelation is in this 
ase the identity relation (R4). For instan
e, R3 and R8 are:R3 = 8>><>>:� ix0i0x0 �! � ix4i0x4 � ;8>><>>: ix4 = ix0i0x4 = i0x01 � ix0 � n1 � i0x0 � n9>>=>>; 9>>=>>; ; R8 = 8<:24 ix8i0x8j0x8 35! 24 ix6i0x6j0x6 35 ;8<: ix6 = ix8i0x6 = i0x8j0x6 = j0x8 � 19=; 9=; :States with no su

essors are �nal states. If the equation of a �nal state is alwaystrue, then this is a su

ess (x1; x7), otherwise this is a failure state (x2; x3). Thea

ess path from the initial state x0 to the failure state x2 is Rx2 = R1 andto x7 is Rx7 = R3:R4:R5:(R7:R8)�:R6. When a
tual relations are substituted to



letters, the rea
hability relations of these states are:Rx2 = 8>><>>:� ix0i0x0 �! � ix2i0x2 � ;8>><>>: i0x2 = i0x0ix0 = 0ix2 = 01 � i0x2 � n9>>=>>; 9>>=>>; ; Rx7 8>><>>:� ix0i0x0 �! � ix7i0x7 � ;8>><>>: ix7 = ix0i0x7 = i0x01 � ix0 � n1 � i0x0 � n9>>=>>; 9>>=>>; :Theorem 1. Two SAREs are equivalent for outputs O and O0 i� the equivalen
eMSA with initial state O[i℄ = O0[i0℄ is su
h that all failure states are unrea
hableand the rea
hability relation of ea
h su

ess state is in
luded in the identityrelation.In our example, rea
hability relations of su

ess states are a
tually in
luded inthe main diagonal (obviously true for Rx7 sin
e ix0 = i0x0 implies ix7 = i0x7) andit 
an be shown that the relations for the failure states are empty (veri�ed forRx2 sin
e ix0 = i0x0 implies 1 � 0). Hen
e, the two SAREs are equivalent.It may seem at �rst glan
e that building the equivalen
e MSA and then
omputing the rea
hability relations may give us an algorithm for solving theequivalen
e problem. This is not so, be
ause the 
onstru
tion of the transitive
losure of a relation is not an e�e
tive pro
edure [6℄.3 PrototypeOur prototype SARE 
omparator, SAReQ, uses existing high-level libraries.More pre
isely SAReQ is built on top of SPPoC, an Obje
tive Caml toolboxwhi
h provides, among other fa
ilities, an interfa
e to the PolyLib and to theOmega Library. Manipulations of SAREs involve a number of operations onpolyhedral domains (handled by the PolyLib). Computing rea
hability relationsof �nal states boils down to operations su
h as 
omposition, union and transitive
losure on relations (handled by the Omega Library).The SAREs are parsed using the 
amlp4 prepro
essor for OCaml, the syntaxused is patterned after the language Alpha [7℄. We give below the text of thetwo SAREs of se
tion 2 as expe
ted by SAReQ:pipe [n℄ {O[i℄ = { { i=0 } : 1 ;{ 1<=i<=n } : f(I[i℄) }} pipe' [n℄ {X'[i',j'℄ = { { 0<=i'<=n, j'=0 } : I[i'℄ ;{ 0<=i'<=n, 1<=j'<=n } : X'[i', j'-1℄} ;O'[i'℄ = { { i'=0 } : 1 ;{ 1<=i'<=n } : f(X'[i',n℄) }}To make the program more friendly a WEB interfa
e is available at the URLhttp://sareq.eudil.fr. This interfa
e gives a

ess to a library of examples,allows the testing of new problems and presents the results in a readable way.4 Con
lusions and Future WorkWe believe that our SARE 
omparator has about the same analyti
 power asmost automati
 parallelization tools. It 
an handle only aÆne array subs
ripts



and aÆne loop bounds. Comparison with the work of Metzger et. al. [8℄ is diÆ-
ult, sin
e we do not have a

ess to an implementation. We believe our normalform is more powerful than theirs, sin
e we 
an upgrade an array to arbitrarydimension, while they are limited to s
alar expansion. Also, it does not seemthat they 
an deal with most loop modi�
ations (inter
hange, skewing, indexset splitting) and are limited to loop distibution. On the other hand, providedthe program give them the ne
essary 
lues, they 
an handle some forms of asso-
iativity and 
ommutativity.We believe that the most important problem with the present tool is thefa
t that it 
annot use semanti
al information on the underlying operators. Wewould like to spe
ify a semanti
s by a set of simpli�
ation rules or algorithms.In the present prototype, the possibility of applying simpli�
ations is limited,sin
e 
omputation rules are never 
ombined. One suggestion is to add \forward"substitution rules. However, we still have to �nd a heuristi
s for driving thesubstitution pro
ess.The present tool is just a building blo
k in a 
omplete program 
omparator.In the �rst pla
e, we have to 
onne
t it to an array data
ow analyzer ([4℄,[5℄). Se
ondly, we must build a library of referen
e algorithms, and this willdepends on the appli
ation domain. Lastly, many sour
e programs are built by
omposition from several referen
e algorithms. Our tool 
an only be appliedif we have delineated the several 
omponents, and if we have identi�ed inputsand outputs. At the time of writing, we believe that this has to be handled byheuristi
s, but this 
an only be veri�ed by experiments.Referen
es1. D. Barthou, P. Feautrier, and X. Redon. On the equivalen
e of two systems of aÆnere
urren
e equations. Te
hni
al Report RR-4285, INRIA, O
t. 2001.2. B. Boigelot and P. Wolper. Symboli
 veri�
ation with periodi
 sets. In Pro
eedingsof the 6th International Conferen
e on Computer-Aided Veri�
ation, volume 818 ofLe
ture Notes in Computer S
ien
e, pages 55{67. Springer-Verlag, 1994.3. A. Darte, Y. Robert, and F. Vivien. S
heduling and automati
 Parallelization.Birkh�auser, 2000.4. P. Feautrier. Data
ow analysis of s
alar and array referen
es. Int. J. of ParallelProgramming, 20(1):23{53, Feb. 1991.5. M. Griebl and C. Lengauer. The loop parallelizer LooPo { Announ
ement. In 9thLanguages and Compilers for Parallel Computing Workshop. Springer, LNCS 1239,1996. http://www.fmi.uni-passau.de/
l/loopo.6. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive 
losure of in�nitegraphs and its appli
ations. Int. J. of Parallel Programming, 24(6):579{598, 1996.7. H. Leverge, C. Mauras, and P. Quinton. The alpha language and its use for thedesign of systoli
 arrays. Journal of VLSI Signal Pro
essing, 3:173{182, 1991.8. R. Metzger and Z. Wen. Automati
 Algorithm Re
ognition: A New Approa
h toProgram Optimization. MIT Press, 2000.9. X. Redon and P. Feautrier. Dete
tion of s
ans in the polytope model. ParallelAlgorithms and Appli
ations, 15:229{263, 2000.


