On the Equivalence of Two Systems of Affine
Recurrence Equations

Denis Barthou', Paul Feautrier?, and Xavier Redon®

! Université de Versailles Saint-Quentin, Laboratoire PRiSM,
F-78035 Versailles, France,
Denis.Barthou@prism.uvsq.fr,

2 INRIA, F-78153 Le Chesnay, France,
Paul.Feautrier@inria.fr,

3 Université de Lille I, Ecole Polytech. Univ. de Lille & Laboratoire LIFL,
F-59655 Villeneuve d’Ascq, France,

Xavier.Redon@eudil.fr,

Abstract. This paper deals with the problem of deciding whether two
Systems of Affine Recurrence Equations are equivalent or not. A solu-
tion to this problem would be a step toward algorithm recognition, an
important tool in program analysis, optimization and parallelization. We
first prove that in the general case, the problem is undecidable. We then
show that there nevertheless exists a semi-decision procedure, in which
the key ingredient is the computation of transitive closures of affine rela-
tions. This is a non-effective process which has been extensively studied.
Many partial solutions are known. We then report on a pilot implemen-
tation of the algorithm, describe its limitations, and point to unsolved
problems.

1 Introduction

1.1 Motivation

Algorithm recognition is an old problem in computer science. Basically, one
would like to submit a piece of code to an analyzer, and get answers like “Lines 10
to 23 are an implementation of Gaussian elimination”. Such a facility would en-
able many important techniques: program comprehension and reverse engineer-
ing, program verification, program optimization and parallelization, hardware-
software codesign among others.

Simple cases of algorithm recognition have already been solved, mostly using
pattern matching as the basic technique. An example is reduction recognition,
which is included in many parallelizing compilers. A reduction is the application
of an associative commutative operator to a data set. See [9] and its references.
This approach has been recently extended to more complicated patterns by
several researchers (see the recent book by Metzger [8] and its references).

In this paper, we wish to explore another approach. We are given a library of
algorithms. Let us try to devise a method for testing whether a part of the source

program is equivalent to one of the algorithms in the library. The stumbling block
is that in the general case, the equivalence of two programs is undecidable. Our
aim is therefore to find sub-cases for which the equivalence problem is solvable,
and to insure that these cases cover as much ground as possible.

The first step is to normalize the given program as much as possible. One
candidate for such a normalization is conversion to a System of Affine Recurrence
Equations (SARE)[3]. It has been shown that static control programs [4] can be
automatically converted to SAREs. The next step is to design an equivalence
test for SAREs. This is the main theme of this paper.

1.2 Equivalence of two SAREs

Suppose we are given two SAREs with their input and output variables. Suppose
furthermore that we are given a bijection between the input variables of the two
SAREs, and also a bijection between the output variables. In what follows, two
corresponding input or output variables are usually denoted by the same letter,
one of them being accented.

The two SAREs are equivalent with respect to a pair of output variables, iff
the outputs evaluate to the same values provided that the input variables are
equal. In order to avoid difficulties with non-terminating computations, we will
assume that both SAREs have a schedule.

The equivalence of two SARESs depends clearly on the domain of values used
in the computation. In this preliminary work, we will suppose that values belong
to the Herbrand universe (or the initial algebra) of the operators occurring in the
computation. The Herbrand universe is characterized by the following property:

W(tt, ..y tn) =wW'(t,...) w=w,n=n"and t;=t,,i=1...n. (1)

where w and w’ are operators and t1,...,t,, t],...,t), are arbitrary terms. The

general case is left for future work.

It can be proved that, even in the Herbrand universe, the equivalence of two
SAREs is undecidable. The proof is rather technical and can be found in [1].
In Sect. 2 we define and prove a semi-decision procedure which may prove or
disprove the equivalence of two SAREs, or fails. In Sect. 3 we report on a pilot
implementation of the semi-decision procedure. We then conclude and discuss
future work.

2 A Semi-decision Procedure

From the above result, we know that any algorithm for testing the equivalence
of two SAREs is bound to be incomplete. It may give a positive or negative
answer, or fail without reaching a decision. Such a procedure may nevertheless
be useful, provided the third case does not occur too often. We are now going to
design such a semi-decision procedure. To each pair of SAREs we will associate
a memory state automaton (MSA) [2] in such a way that the equivalence of our
SARESs can be expressed as problems of reachability in the corresponding MSA.
Let us consider the two parametric SAREs (with parameter n):

oli] = 1, i=0 (2) o'li'l =1, i =0, (3)
= fU[i]), 1<i<n, = f(X'[i',n]), 1< <,
X’[il7jl]:I,[il], OSZ,SH,],ZO,
=X'[i",j' =1,0<i" <n,1<j <

The reader familiar with systolic array design may have recognized a much sim-
plified version of a transformation known as pipelining or uniformization, whose
aim is to simplify the interconnection pattern of the array.

The equivalence MSA is represented by the following drawing. Basically, MSA
are finite state automata, where each state is augmented by an indez vector. Each
edge is labelled by a firing relation, which must be satisfied by the index vector
for the edge to be traversed.

s

Ra
R l Ry

The automaton is constructed on demand from the initial state O[i] = O'[i'],

expressing the fact that the two SAREs have the same output. Other states are
equations between subexpressions of the left and right SARE. The transitions
are built according to the following rules: If the lhs of a state is X[u(i,)], it can
be replaced in its successors by X[i,], provided the firing relation includes the
predicate i, = u(i;) (Rs). If the lhs is X[i,] where X is defined by n clauses
X[i] = wi(...Y[uy(i)]...),i € Dy then it can be replaced in its n successors
by wi(...Y[uy(iy)]...) provided the firing relation includes {i, € Dy,i, = i,}
(Ro, ..., R3 and Rg, R7). There are similar rules for the rhs. Note that equations
of the successor states are obtained by simultaneous application of rules for
lhs and rhs. Moreover, the successors of a state with equation w(...) = w(...)
are states with equations between the parameters of the function w. The firing
relation is in this case the identity relation (R4). For instance, R3 and Rg are:

2 =1
i i i/m4 _ ;0 lzg lag lng = lag
= . .1 ./ -/
Rs = FO | T a0 ,Rs = P'ag | = | Vg |, V2 = 1 ag .
Zzo 114 1 S 25"0 S n . .7 1 T 1
1§»/ < J ag J zg J ag = J ag

States with no successors are final states. If the equation of a final state is always
true, then this is a success (x1,x7), otherwise this is a failure state (z2,z3). The
access path from the initial state xo to the failure state z» is R,, = R; and
to x7 is Ry, = R3.R4.R5.(R7.Rg)*.Rg. When actual relations are substituted to

letters, the reachability relations of these states are:

’ ./

)) 222 :ZEO)) 2'327 :%zo
I3 k3 3 = I3 '3 k3 =1
R, = PR I I 0 — , Ra PN R I I Y
g (29 sz, =0 g g 1< 27”0 <n
1<i,, <n 1<iz <n

Theorem 1. Two SAREs are equivalent for outputs O and O' iff the equivalence
MSA with initial state O[i] = O'[i'] is such that all failure states are unreachable
and the reachability relation of each success state is included in the identity
relation.

In our example, reachability relations of success states are actually included in
the main diagonal (obviously true for R,, since iy, = i, implies i,, = i},) and
it can be shown that the relations for the failure states are empty (verified for
R,, since i,, = ij implies 1 < 0). Hence, the two SAREs are equivalent.

It may seem at first glance that building the equivalence MSA and then
computing the reachability relations may give us an algorithm for solving the
equivalence problem. This is not so, because the construction of the transitive

closure of a relation is not an effective procedure [6].

3 Prototype

Our prototype SARE comparator, SAReQ, uses existing high-level libraries.
More precisely SAReQ is built on top of SPPoC, an Objective Caml toolbox
which provides, among other facilities, an interface to the PolyLib and to the
Omega Library. Manipulations of SAREs involve a number of operations on
polyhedral domains (handled by the PolyLib). Computing reachability relations
of final states boils down to operations such as composition, union and transitive
closure on relations (handled by the Omega Library).

The SARESs are parsed using the camlp4 preprocessor for OCaml, the syntax
used is patterned after the language Alpha [7]. We give below the text of the
two SAREs of section 2 as expected by SAReQ:
pipe [n] { pipe’ [nl {

0[] ={ {i=01} : 1 ; X°[47,3°1 = { { 0<=i’<=m, §°=0 } : I[i’] ;
=i<=n } : £(I[i]) } { 0<=i’<=n, 1<=j’<=n } : X’[i’, j’-1]
’ 0T (LTt
{ 1<=i’4<=n } : £f(X’[i’,n]) }
}

To make the program more friendly a WEB interface is available at the URL

http://sareq.eudil.fr. This interface gives access to a library of examples,
allows the testing of new problems and presents the results in a readable way.

4 Conclusions and Future Work

We believe that our SARE comparator has about the same analytic power as
most automatic parallelization tools. It can handle only affine array subscripts

and affine loop bounds. Comparison with the work of Metzger et. al. [8] is diffi-
cult, since we do not have access to an implementation. We believe our normal
form is more powerful than theirs, since we can upgrade an array to arbitrary
dimension, while they are limited to scalar expansion. Also, it does not seem
that they can deal with most loop modifications (interchange, skewing, index
set splitting) and are limited to loop distibution. On the other hand, provided
the program give them the necessary clues, they can handle some forms of asso-
ciativity and commutativity.

We believe that the most important problem with the present tool is the
fact that it cannot use semantical information on the underlying operators. We
would like to specify a semantics by a set of simplification rules or algorithms.
In the present prototype, the possibility of applying simplifications is limited,
since computation rules are never combined. One suggestion is to add “forward”
substitution rules. However, we still have to find a heuristics for driving the
substitution process.

The present tool is just a building block in a complete program comparator.
In the first place, we have to connect it to an array dataflow analyzer ([4],
[5]). Secondly, we must build a library of reference algorithms, and this will
depends on the application domain. Lastly, many source programs are built by
composition from several reference algorithms. Our tool can only be applied
if we have delineated the several components, and if we have identified inputs
and outputs. At the time of writing, we believe that this has to be handled by
heuristics, but this can only be verified by experiments.

References

1. D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of affine
recurrence equations. Technical Report RR-4285, INRIA, Oct. 2001.

2. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proceedings
of the 6th International Conference on Computer-Aided Verification, volume 818 of
Lecture Notes in Computer Science, pages 55—67. Springer-Verlag, 1994.

3. A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic Parallelization.
Birkh&user, 2000.

4. P. Feautrier. Dataflow analysis of scalar and array references. Int. J. of Parallel
Programming, 20(1):23-53, Feb. 1991.

5. M. Griebl and C. Lengauer. The loop parallelizer LooPo — Announcement. In 9th
Languages and Compilers for Parallel Computing Workshop. Springer, LNCS 1239,
1996. http://www.fmi.uni-passau.de/cl/loopo.

6. W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of infinite
graphs and its applications. Int. J. of Parallel Programming, 24(6):579-598, 1996.

7. H. Leverge, C. Mauras, and P. Quinton. The ALPHA language and its use for the
design of systolic arrays. Journal of VLSI Signal Processing, 3:173-182, 1991.

8. R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to
Program Optimization. MIT Press, 2000.

9. X. Redon and P. Feautrier. Detection of scans in the polytope model. Parallel
Algorithms and Applications, 15:229-263, 2000.

