Previous Contents Next

References

[1]
Pierre Boulet and Paul Feautrier. Scanning polyhedra without do-loops. In PACT'98, pages 4--11. IEEE Computer Society, 1998.

[2]
Pierre Boulet and Xavier Redon. Communication pre-evaluation in HPF. In EUROPAR'98, volume 1470 of LNCS, pages 263--272. Springer Verlag, 1998.

[3]
Philippe Clauss. Counting solutions to linear and nonlinear constraints through ehrhart polynomials: Applications to analyze and transform scientific programs. In ACM Int. Conf. on Supercomputing. ACM, 1996.

[4]
Philippe Clauss and Vincent Loechner. Parametric analysis of polyhedral iteration spaces. In IEEE Int. Conf. on Application Specific Array Processors, ASAP'96. IEEE Computer Society, 1996.

[5]
Philippe Clauss, Vincent Loechner, and Doran K. Wilde. Deriving formulae to count solutions to parameterized linear systems using ehrhart polynomials: Applications to the analysis of nested-loop programs. Technical Report RR 97-05, Laboratoire Image et Calcul Parallèle Scientifique, April 1997. URL: http://icps.u-strasbg.fr/PolyLib.

[6]
Jean-François Collard, Paul Feautrier, and Tanguy Risset. Construction of DO loops from systems of affine constraints. Parallel Processing Letters, 5(3):421--436, 1995.

[7]
Alain Darte and Yves Robert. Constructive methods for scheduling uniform loop nests. IEEE Trans. Parallel Distributed Systems, 5(8):814--822, 1994.

[8]
Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform and affine loop nests over parametric domains. J. Parallel and Distributed Computing, 29:43--59, 1995.

[9]
Daniel de Rauglaudre. Camlp4. URL: http://caml.inria.fr/camlp4.

[10]
Michèle Dion and Yves Robert. Mapping affine loop nests: New results. In Bob Hertzberger and Guiseppe Serazzi, editors, High-Performance Computing and Networking, International Conference and Exhibition, volume LCNS 919, pages 184--189. Springer-Verlag, 1995. Extended version available as Technical Report 94-30, LIP, ENS Lyon (anonymous ftp to lip.ens-lyon.fr).

[11]
Paul Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22:243--268, 1988. URL: http://www.prism.uvsq.fr/parallel/softs/.

[12]
Paul Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel Programming, 20(1):23--51, 1991.

[13]
Paul Feautrier. Some efficient solutions to the affine scheduling problem, part I: one-dimensional time. Int. J. Parallel Programming, 21(5):313--348, 1992.

[14]
Paul Feautrier. Some efficient solutions to the affine scheduling problem, part II: multi-dimensional time. Int. J. Parallel Programming, 21(6):389--420, 1992.

[15]
Paul Feautrier. Towards automatic distribution. Parallel Processing Letters, 4(3):233--244, 1994.

[16]
Paul Feautrier and Nadia Tawbi. Résolution de systèmes d'inéquations linéaires; mode d'emploi du logiciel PIP. Technical Report 90-2, Institut Blaise Pascal, Laboratoire MASI (Paris), 1990.

[17]
Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and David Wonnacott. The Omega Library Interface Guide. Technical report, Dept. of Computer Science, Univ. of Maryland, College Park, 1996. URL: http://www.cs.umd.edu/projects/omega/.

[18]
Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple mappings. In The 5th Symposium on Frontiers of Massively Parallel Computation, pages 332--341, McLean, Virginia, 1995.

[19]
MapleSoft. Maple. URL: http://www.maplesoft.com.

[20]
Projet Cristal. The caml language. URL: http://caml.inria.fr/.

[21]
W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In IEEE, editor, Proceedings, Supercomputing '91: Albuquerque, New Mexico, November 18--22, 1991, pages 4--13. IEEE Computer Society Press, 1991.

[22]
William Pugh. A practical algorithm for exact array dependence analysis. Communications of the ACM, 8:27--47, 1992.

[23]
Doran K. Wilde. A library for doing polyhedral operations. Technical Report Internal Publication 785, IRISA, Rennes, France, Dec 1993. Also published as INRIA Research Report 2157.

[24]
Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm to maximize parallelism. IEEE Trans. Parallel Distributed Systems, 2(4):452--471, 1991.

[25]
Wolfram Research. Mathematica. URL: http://www.mathematica.com.

Previous Contents Next